Energy-saving control strategy for ultra-dense network base stations
Aiming at the problem of mobile data traffic surge in 5G networks, this paper proposes an effective solution combining massive multiple-input multiple-output techniques
Overall, 5G communication base stations' energy consumption comprises static and dynamic power consumption . Among them, static power consumption pertains to the reduction in energy required in 5G communication base stations that remains constant regardless of service load or output transmission power.
Energy sharing between base stations is achieved through resistive power lines. However, the error of the energy storage capacity model obtained by linear fitting is large because the variation of the communication volume in different regions does not have a linear law, and there are spatial and temporal differences.
Where traffic is high, less base station energy storage capacity is available. Compared with the fixed backup time, the base station energy storage model proposed in this article not only improves the utilization rate of base station energy storage, but also reduces the power loss load and power loss cost in the distribution network fault area.
Based on the established energy storage capacity model, this paper establishes a strategy for using base station energy storage to participate in emergency power supply in distribution network fault areas.
PDF version includes complete article with source references.
Get specifications and technical data for our MW-scale energy storage and PV integration solutions.
45 Energy Innovation Park
London WC2H 8NA, United Kingdom
+44 20 7783 1966
Monday - Friday: 8:00 AM - 6:00 PM GMT