Decarbonizing Oil Refineries: The Transition to Green Electricity
With the particular emphasis put on introducing green electricity into the high-temperature processes, this document offers the means of doing so by decarbonizing oil
Conclusion The present study investigates the feasibility of solar hybrid system to generate steam in the oil refinery to maintain the temperature of heavy crude oil products before despatching from storage tanks. Due to the intermittent behaviour of solar energy, the solar hybrid system is integrated with a sensible heat storage tank.
Using TRNSYS software, the proposed Parabolic Trough Collector (PTC)-based solar heating system paired with the boiler is modelled. Sensible thermal energy storage (TES) system is integrated into the refinery's process heating to handle the intermittent nature of solar energy. It was discovered * Corresponding author. ** Corresponding author.
Using TRNSYS software, the proposed Parabolic Trough Collector (PTC)-based solar heating system paired with the boiler is modelled. Sensible thermal energy storage (TES) system is integrated into the refinery's process heating to handle the intermittent nature of solar energy.
Other studies in the literature considered coupling solar energy systems to oil refineries to decarbonize their operation. The applicability and feasibility of introducing a concentrated solar power (CSP) system to reduce partial reliance on process heaters of a crude oil refinery was studied by Danish et al. .
PDF version includes complete article with source references.
Get specifications and technical data for our MW-scale energy storage and PV integration solutions.
45 Energy Innovation Park
London WC2H 8NA, United Kingdom
+44 20 7783 1966
Monday - Friday: 8:00 AM - 6:00 PM GMT