Coordinated Control Strategy of New Energy Power
In Fig. 7, the energy storage power curve greater than zero represents the absorbed power of the energy storage, and less than the zero part represents the power to be output by the energy
In conclusion, the simulation results underscore the pivotal role of advanced control, energy storage, and renewable resource integration in enhancing power system stability.
An important observation is that throughout the power variation process, the total power output remained constant. These results demonstrate that the hybrid energy storage control strategy proposed in this paper effectively allocates power between the batteries and supercapacitors while maintaining a stable external power output.
Energy storage contributes to grid stability by reducing power imbalances, with an average mitigation rate of 50% for fluctuations in renewable generation. In summary, this analysis demonstrates the potential of energy storage systems to enhance the stability of power systems in the context of renewable energy integration.
The significance of this research is in expanding the application scope of hybrid energy storage systems. The proposed control method addresses the limitations of traditional hybrid energy storage systems, which are restricted to DC buses, enabling more flexible applications in distributed energy storage devices.
PDF version includes complete article with source references.
Get specifications and technical data for our MW-scale energy storage and PV integration solutions.
45 Energy Innovation Park
London WC2H 8NA, United Kingdom
+44 20 7783 1966
Monday - Friday: 8:00 AM - 6:00 PM GMT