High-uniformity liquid-cooling network designing approach for energy
Our approach was devised to efficiently construct liquid-cooling networks specifically tailored for diverse scale BESSs, with considerations of cost-effectiveness, energy
The 5MWh liquid-cooling energy storage system comprises cells, BMS, a 20'GP container, thermal management system, firefighting system, bus unit, power distribution unit, wiring harness, and more. And, the container offers a protective capability and serves as a transportable workspace for equipment operation.
The liquid cooling unit, firefighting system, confluence chamber, and power distribution room are located at one end of the cabin, with the liquid cooling unit taking up the majority of the space. The liquid cooling piping runs along the bottom of the cabin, while the firefighting piping and wiring are laid out at the top.
The energy storage system supports functions such as grid peak shaving, frequency regulation, backup power, valley filling, demand response, emergency power support, and reactive power compensation. The 2.5MW/5.016MWh battery compartment utilizes a battery cluster with a rated voltage of 1331.2V DC and a design of 0.5C charge-discharge rate.
PDF version includes complete article with source references.
Get specifications and technical data for our MW-scale energy storage and PV integration solutions.
45 Energy Innovation Park
London WC2H 8NA, United Kingdom
+44 20 7783 1966
Monday - Friday: 8:00 AM - 6:00 PM GMT