(PDF) Optimization and improvement method for complementary power
With the increasing energy demand, distributed photovoltaic power generation and wind energy are used as new energy sources for sustainable development. To solve this
The time-domain energy complementarity between wind and solar energy has been assessed in many sites, and correlation coefficients such as Pearson, Kendall, and Spearman are the most commonly used indexes in quantifying and evaluating the complementary properties between wind and solar power.
However, less attention has been paid to quantify the level of complementarity of wind power, photovoltaic and hydropower. Therefore, this paper proposes a complementarity evaluation method for wind power, photovoltaic and hydropower by thoroughly examining the fluctuation of the independent and combined power generation.
In this paper, we found that combining wind energy from region six with solar power from region three showed the best complementary effects in the first type of study. Similarly, combining wind energy from region seven with solar energy from region three yielded the best results in the second type of complementarity study.
Moreover, in 2018, Zhang et al. proposed a model to estimate the spatial and temporal complementarities of wind-solar energy. It adopted the ramp rate to evaluate the variability concisely, and used the synergy coefficient to express the mutual complementarity between wind and solar energy.
PDF version includes complete article with source references.
Get specifications and technical data for our MW-scale energy storage and PV integration solutions.
45 Energy Innovation Park
London WC2H 8NA, United Kingdom
+44 20 7783 1966
Monday - Friday: 8:00 AM - 6:00 PM GMT