Small-sized aerial solar container communication station
Overview Can a multi-energy complementary power generation system integrate wind and solar energy? Simulation results validated using real-world data from the southwest region of China.
Figure 1 shows the structure of a wind-solar-hydro-thermal-storage multi-source complementary power system, which is composed of conventional units (thermal power units, hydropower units, etc.), new energy units (photovoltaic power plants, wind farms, etc.), energy storage systems, and loads.
The joint operation of wind, solar, water, and thermal power based on pumped storage power stations is not only a supplement and improvement to traditional energy systems but also a crucial step towards a cleaner, more efficient, and more sustainable energy future.
Literature (Cuiping et al., 2017) evaluated the operating characteristics of the photovoltaic-hydropower complementary system based on indicators such as the abandoned light ratio, the ratio of thermal power to load, and grid-connected revenue.
Its strong regulation capability, combined with the random fluctuations of wind and solar power, forms a complementary system that outputs relatively smooth and stable high-quality power, effectively solving the challenges of wind and solar energy development (Bello et al., 2023).
PDF version includes complete article with source references.
Get specifications and technical data for our MW-scale energy storage and PV integration solutions.
45 Energy Innovation Park
London WC2H 8NA, United Kingdom
+44 20 7783 1966
Monday - Friday: 8:00 AM - 6:00 PM GMT