Utility-scale battery energy storage system (BESS)
The main goal is to support BESS system designers by showing an example design of a low-voltage power distribution and conversion supply for a BESS system and its main components.
In this paper, the single capacitor method is employed to achieve the energy balance between lithium-ion batteries. By controlling the on-off of the switch, the single battery with higher voltage in the battery pack is charged to the capacitor C, and then the capacitor C charges the battery with lower voltage.
The most important key parameter you should know in lithium-ion batteries is the nominal voltage. The standard operating voltage of the lithium-ion battery system is called the nominal voltage. For lithium-ion batteries, the nominal voltage is approximately 3.7-volt per cell which is the average voltage during the discharge cycle.
The SoC voltage chart for lithium batteries shows the voltage values with respect to SoC percentage. A Li-ion cell when fully charged at 100%SoC can have nearly 4.2V. As it starts to discharge itself, the voltage decreases, and the voltage remains to be 3.7V when the battery is at half charge, ie, 50%SoC.
In more detail, let's look at the critical components of a battery energy storage system (BESS). The battery is a crucial component within the BESS; it stores the energy ready to be dispatched when needed. A battery contains lithium cells arranged in series and parallel to form modules, which stack into racks.
PDF version includes complete article with source references.
Get specifications and technical data for our MW-scale energy storage and PV integration solutions.
45 Energy Innovation Park
London WC2H 8NA, United Kingdom
+44 20 7783 1966
Monday - Friday: 8:00 AM - 6:00 PM GMT